

Lead Remediation Symposium

Literature Review:

Efficacy of Lead Abatement Strategies in the Reduction of Blood Lead Concentrations in Children

R. Lorenzana¹, R. Troast¹, M. Follansbee², S. Fontenelle², and K. Boschulte²

¹ US EPA; ² ISSI Consulting Group

May 23, 2000

Introduction

- U.S. EPA contract work sponsored by Superfund program
- Facts:
 - I Several exposure pathways for lead (multimedia)
 - I Several abatement methods are available, and all have been reported to be effective

Question

Abatement of which media or combination of methods had most impact on blood lead concentrations in children?

Methods

- Literature review using National Library of Medicine databases
- Searches were conducted between 7/97–8/99
- No original data were collected

Inclusion Criterion

Results must be reported in terms of quantitative blood lead concentration in children before and after abatement.

Articles Retrieved

- 19 reports satisfied the inclusion criteria
- I These can be classified by primary abatement method
 - **I** Soil (8)
 - I Dust (4)
 - **I** Paint (5)
 - I Education (2)

Assessment

I Impact was assessed as the percent change in the blood lead concentration of children between pre- and post- abatement.

Confounding Variables

- Seasonality, age, SES, education, nutrition, dose-response variability, long-term reductions of lead in the environment
- Discriminating effect of one method when several were used

Soil Abatement

Study	Decrease in blood lead in µg/dL (time frame)
Boston Three-City: Phase I	Study group: 22% (0-6 months); 19% (6+ months) 13.1–10.19–10.65 Group A: 29% (0-6 months); 7% (6+ months) 12.37–8.85–11.49 Group B: 18% (0-6 months); 6% (6+ months) 12.02–9.83–11.35
Boston Three City: Phase II	Study group: 22% (0-6 months); 19% (6+ months) 13.1–10.19–10.65 Group A: 29% (0-6 months); 7% (6+ months) 12.37–8.85–11.49 Group B: 18% (0-6 months); 6% (6+ months) 12.02–9.83–11.35
Baltimore Three City	Control group: 23% decrease 10.9–8.4 Treatment group: 20% decrease 12.1–9.7
Port Pirie	26% (6+ years) 19.3–14.2
Toronto Soil & Dust	SR group: 34%, 54%, 54%, and 74% (4, 5, 6, and 8 years, respectively) 14-9.3-6.5-6.4-3.9 OBLS group: 57%, 70%, and 71% (4, 5, and 8 years, respectively) 11.9-5.1-3.6-3.5
St. Jean-sur-Richelieu	Children aged 6 months - 10 years: 48% (2 years) 9.7–5.0 Children aged 6 months - 5 years: 44% (2 years) 9.8–5.5
Rouyn-Noranda	1991 group: 27% (2 years) 10.0–7.3
Bunker Hill	47% (6+ years) 8.5–4.5

Dust Abatement

Study	Decrease in blood lead in µg/dL (time frame)
Baltimore Dust Control	Control: no change 38.5–38.5–38.5 Experimental: 14% (6 months);18% (6+ months) 38.6–33.3–31.7
Trail, British Columbia	Control: 8% (10 months) 11.911.1 Case: 5% (10 months) 11.3-10.7
Rochester Randomized: 1996	Control: increase by 6% 6.8–7.22 Intervention: 7% 6.6–6.13
Rochester Randomized: 1999	Control: increase by 160% 2.9–7.8 Intervention: increase by 160% 2.8–7.3

Paint Abatement

Study	Decrease in blood lead in µg/dL (time frame)
St. Louis Retrospective	Control: 12% (6+ months) 35.1–30.9 Case: 23% (6+ months) 34.9–26.7
Central Massachusetts Retrospective	18% (1 year) 26.0–21.2
Boston Retrospective	8% (0-6 months) 36.4–33.5

Education

Study	Decrease in blood lead in µg/dL (time frame)
Granite City Education	48% (0-6 months); 40% (1 year) 15–7.8–9.0
Milwaukee Retrospective Education	Reference group: 6% 21.2–20 Study group: 21% 20.0–15.8

Conclusions

- In general, lead abatement is effective in reducing blood lead concentrations in children
- Use of 2 or more methods was usually more effective than use of one method
- The greatest effect was most evident in children with high initial blood lead concentrations